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The extremal solutions of the truncated L-problem of moments in two real
variables, with support included in a given compact set, are described as charac-
teristic functions of semi-algebraic sets given by a single polynomial inequality. An
exponential kernel, arising as the determinantal function of a naturally associated
hyponormal operator with rank-one self-commutator, on the other hand provides
a defining function for these semi-algebraic sets and, on the other hand, encodes
in a closed form their moments. In order to understand the finite determination
structure of the extremal sequences of moments we study analytic continuation
properties of the corresponding exponential kernel and, separately, some cyclicity
properties of the associated hyponormal operator. An intrinsic characterization of
the exponential kernel is also discussed. � 1998 Academic Press

1. INTRODUCTION

In a previous paper [15], a special class of extremal solutions of the
L-problem of moments in two variables (called degenerated solutions) was
related via hyponormal operators to quadrature domains in the plane and
to some rational functions associated to them. It is the aim of the present
paper to apply the same techniques to all extremal solutions of the
L-problem and to begin a study of the analytic and matricial objects
arising from this investigation.

Let K be a compact subset of the complex plane, let L be a fixed positive
constant, and let N be a fixed positive integer. We are interested in
classifying and characterizing in intrinsic terms the moments

anm=|
K

.(x, y) xnym dA, 0�m�m+n�N,
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of a measurable function , on K which satisfies 0�,�L, dA-a.e. Above,
and throughout the paper, dA stands for the planar Lebesgue measure.
Note that because we are working with the two-dimensional Lebesgue
measure, the alterations of null measure of the compact set K (such as
adding or removing continuous exterior lines or internal slits) are not
significant for our discussion.

Let 7 denote the collection of all vectors a=(akl)k+l�N # Rd

(d=(N+1)(N+2)�2) which arise as the moments of a function , as
before. It is clear that 7 is a compact convex subset of Rd. Following Krein
and his now classical convexity theory ([10, 8]) we infer that a point a
belongs to the boundary of the set 7 if and only if it corresponds to the
moments of a function � of the form

�=L/0 , 0=[(x, y) # K ; p(x, y)>0],

where p is an arbitrary polynomial of degree at most equal to N (with real
coefficients) and /D is the characteristic function of the set D. Moreover, it
is well known that only in this case does the above moment problem have
a unique solution. (The role of the bound L in some related extremality
problem will also appear in the following).

Thus a very natural question appears from the very beginning: ``How is
the extremal solution , encoded in its moments of degree less than or equal
to N,'' or equivalently, ``Which is the structure of the sequence of moments
of an extremal solution, knowing that it depends only on a finite initial
segment of it.'' Similarly to the classical one-variable case, we have two
powerful tools to answer this question: an exponential E of a Cauchy-type
transform of the extremal set and a hyponormal operator T associated
canonically with the same set. For the function E we expect a rigid
behaviour (so that it depends only on a finite initial segment of its Taylor
expansion at infinity), while for the operator T we expect a matricial struc-
ture which again depends only on a finite dimensional block of it.

Both these rather vague pictures are validated by the one-variable case
(exposed in detail in [10]) and by the situation of quadrature domains (in
two variables) appearing in [15, 16]. We do not expect simple answers
to these finite determination questions. However, any progress in this
direction will have applications beyond the original context (paper [7] is
such an example).

The paper is organized as follows. Section 2 recalls the essential results
of Krein which characterize the extremal solutions of the truncated
L-problem of moments. In Section 3 we restrict to dimension two, where
we investigate the associated hyponormal operators and we establish, via
a rational cyclicity criterion, the existence of a general analytic model of
them, valid for all extremal solutions discussed in Section 2. Another point
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of view is taken in Section 4, where the canonical exponential kernel of an
extremal solution of the moment problem is coming into focus. After a brief
review of the main results of the parallel paper [7] (which reveal analytic
continuation properties of the kernel) we present an intrinsic characteriza-
tion of all these kernels. As a consequence, we interpret the L-problem of
moments as an interpolation problem of the Carathe� odory�Feje� r type, for
a class of analytic functions defined in the bidisk.

2. CONVEXITY RESULTS

This section contains a review of known facts derived from the work
of M. G. Krein and his school. Due to their generality, the results are
presented in a slightly more general setting (Rn rather than R2 and an
arbitrary compact support K for the frame of the moment problem). The
basic monographs we refer to for details are [8] and [10].

The variable in Rn is denoted by x=(x1 , ..., xn) ; dx means the volume
measure in Rn. For a multi-index :=(:1 , ..., :n) # Nn we denote |:|=
:1+ } } } +:n and put as usual x:=x:1

1 } } } x:n
n .

Let K be a compact subset of Rn; in order to avoid some minor compli-
cations we assume that int(K){<. Fix a positive integer N and a positive
constant L. The truncated L-problem of moments supported by the set K
consists in finding necessary and sufficient conditions for a sequence
a=(a:) |:| �N of real numbers to be represented as:

a:=|
K

x:,(x) dx ( |:|�N, , # L1(K, dx), 0�,�L). (1)

Moreover, it is of interest to classify all solutions of this problem and to
characterize the uniqueness cases; see [10, Chap. VIl].

For a first part of this section we can adopt the normalization L=1.
Let us denote, for L=1, the set of all possible moment sequences as

follows:

7={a(,)=(a:) ; a:=|
K

x:,(x) dx, |:|�N, , # L1(K, dx), 0�,�1= . (2)

Let R[x] be the space of polynomials in the variables x, with real coef-
ficients. We put PN=PN(Rn)=[ p # R[x], deg( p)�N]. With these data
fixed, we denote d=dim(PN) and parametrize the coordinates in the space
PN /Rd as follows: y=( y:) |:|�N .

It is clear that 7 is a compact convex subset of Rd. Let a0 be a boundary
point of 7 and let f ( y)=(c, y)+d be a supporting affine functional to 7,
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at the point a0. Let us represent the point a0 as the moment sequence of
the function ,0 : a0=a(,0). Then we have the following relations:

(c, a) +d�0 (a # 7)

and

(c, a0)+d=0.

By subtracting them and representing a as a=a(,), we obtain

|
K

p0(x)(,(x)&,0(x)) dx�0 (, # L1(K), 0�,�1), (3)

where p0(x)=� |:| �N c:x:. But relation (3) is possible for all functions , as
above if and only if p0(x)>0 implies ,0(x)=1 and p0(x)<0 implies
,0(x)=0. Since the set of zeroes of a nontrivial polynomial has null volume
measure, these latter implications determine a unique element ,0 # L1. In
other terms, we have proved that ,0=/[ p0>0] a.e., where /S is the charac-
tersistic function of the set S.

In fact, the above argument can easily be reversed, and we can state the
following conclusion.

Proposition 2.1. A point (a:) |:|�N belongs to the boundary of the set 7
of all moments if and only if there is a nontrivial polynomial p(x) of degree
less than or equal to N, and with the property:

a:=|
K & [ p>0]

x: dx ( |:|�N).

Above we have denoted in short by [ p>0] the set of those points x
which satisfy p(x)>0. Since we have assumed that the compact set K pos-
sesses interior points, it is immediate to remark that a(,) # int(7) for all
functions , satisfying 0<,<1.

Following the monograph [10] we slightly change now the point of
view. Since we assume the supporting compact set to be given, after a
translation and homothety the problem (1) is equivalent to

2a:&L |
K

x:dx=|
K

x:(2,(x)&L) dx ( |:|�N),
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where the new unknown function 2,&L satisfies &L�2,&L�L.
Modulo this transformation we consider henceforth the following moment
problem:

a:=|
K

x:,(x) dx ( |:|�N, , # L1(K), &L�,�L). (4)

Let us denote a=(a:) |:|�N to be the sequence of virtual moments.
Because we have assumed int(K){<, the monomials (x:) |:|�N are

linearly independently regarded as functions of x # K. Thus, for L large
enough the problem (4) always admits a solution �.

Let us consider the embedding PN(Rn)/L1
R(K, dx) and consider the

linear functional

la : PN � R, la(x:)=a: ( |:|�N).

By virtue of Riesz Theorem, any continuous extension of la to L1
R(K) is

represented by a function , # L�
R (K). Hence , is a solution of problem (4)

and we have:

la( p)�&p&1, K &,&�, K ( p # PN). (5)

Then it remains to remark that the converse implication is given by the
Hahn�Banach Theorem. Moreover, the familiar analysis of the equality
case in (5) is also relevant for us. Summing up, we can state the next
proposition.

Proposition 2.2. (a) Problem (4) admits a solution if and only if
L�sup[(la( p)�&p&1, K) ; p # PN "[0]].

(b) If L=sup[(la( p)�&p&1, K) ; p # PN"[0]], then the solution is
unique and it coincides with the function L sgn( p0), where p0 is a polynomial
of degree less than or equal to N.

For details of the proof of Proposition 2.2 and further comments see
[10, Section IX.1-2]. In other terms, we can state as a consequence the
following result.

Corollary 2.3. The function , # L�
R (K) is uniquely determined in the

ball [� # L�
R (K) ; &�&�, K�&,&�, K] by its finite sequence of moments

a=a(,) if and only if

,=&,&�, K sgn( p),

where p # PN"[0].
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Returning now to problem (1), with constant L=1, we let the degree N
change from a fixed value N to N+1. Let 7N and 7N+1 denote the corre-
sponding sets of moment sequences; let ? : 7N+1 � 7N be the canonical
projection:

?((a:) |:|�N+1)=(a:) |:|�N .

Since the sets 7N , 7N+1 are convex, the fibre ?&1a of an element a # 7N

is a convex subset of a linear variety which intersects �7N+1. Thus, we can
state the following result.

Theorem 2.3. Let K be a fixed compact subset of Rn with interior points.
The moment problem (1) has a solution for L=1 if and only if there exists
a poynomial P of degree N+1 such that:

a:=|
K & [P>0]

x: dx ( |:|�N).

Contrary to the case n=1, for n>1 there is no constructive way of
finding the polynomial P from the finite moment data (a:) |:|�N .

3. EXTREMAL HYPONORMAL OPERATORS

From now on we assume the dimension of the underlying space to be
two (n=2). Only in this dimension the L-problem of moments can be
interpreted as an inverse spectral problem for a class of hyponormal
operators. The benefits of this relationship have begun to show up in the
previous papers [15] and [16]. In the rest of the present paper we con-
tinue to exploit this operator theory interpretation of the L-problem, with
the future prospect (not yet achieved) of understanding the structure of
extremal sequences of moments. We use the lecture notes [12] as a general
reference to the theory of hyponormal operators.

Let , be a measurable function with compact support in the complex
plane which satisfies 0�,�1, a.e. Let T be the unique (up to unitary
equivalence) hyponormal operator with rank-one self-commutator
([T*, T]=!�!) with the principal function equal to ,.

The two objects above are related by the following formula:

( (T*&w� )&1 !, (T*&z� )&1 !)=1&exp \&1

? |
C

,(`) dA(`)

(`&z)( �̀ &w� )+ ,
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which is valid for all points z, w in the reslovent set of the operator T.
Actually, a separately continuous extension of the above formula to the
whole C2 holds; see [2] and [12]. The importance of this formula lies in
the fact that it relates, after taking the Taylor expansions at infinity, the
moments of the function , to the moments of the operator T with respect
to the vector !.

We are interested in the following in the moments of the extremal
solutions discussed in the preceding section. Therefore, assuming the
supporting compact set K (introduced in Section 2) to be nice, for instance,
a rectangle, we will study the above relationship only for characteristic
functions ,=/0 , where 0 is a bounded domain of the complex plane,
satisfying 0=int(0� ) and possibly being defined by a single polynomial
inequality. To simplify notation we put:

E0(z, w� )=exp \&1

? |
0

dA(`)

(`&z)( �̀ &w� )+ (z, w # C"0� ).

To each domain 0 as above we associate the unique irreducible hyponormal
operator T satisfying [T*, T]=!�! and having the principal function
equal to /0 . We simply call T the hyponormal operator corresponding to 0.
Recall that the spectrum of T is the closure of 0, the essential spectrum is
the boundary of 0, and so on. See [12, Chapt. XI] for more details.

We know from previous work, [15], that in the case of a quadrature
domain 0, the corresponding operator T has a simple two block-diagonal
matricial form. Although for more general domains a more complicated
structure of T is expected, we prove first a general rational cyclicity result
for all these operators. Some related results were obtained with different
techniques in the papers [2, 3, and 14].

Theorem 3.1. Let T be a bounded hyponormal operator with rank-one
self-commutator [T*, ]=!�! and with the principal function equal to the
characteristic function of its spectrum. Then the vector ! is rationally cyclic
for T.

Proof. Let H1 be the rationally cyclic subspace for T # L(H) generated
by the vector !. To be more specific, H1 is the closure of the linear span
of vectors of the form r(T )!, where r is a rational function with poles out-
side _(T ). Let T1 be the restriction of the operator T to H1 . It is well
known that _(T1)/_(T ) and, according to Berger�Shaw inequality, the
hyponormal operator T1 has a trace�class self-commutator; see [12,
Corollary VI.1.5]. Let g=/_(T ) be the principal function of T and let g1

denote the principal function of T1 . We know by the same technique that
was used in the proof of the Berger�Shaw inequality that 0�g1�1 a.e.; see
[12, Proposition X.4.6].
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By taking the orthogonal decomposition H=H1 �H =
1 we obtain a

matrix representation of the operator T :

T=\T1

0
X
T2 + .

Since _(T1)/_(T ), we obtain _(T2)/_(T). Moreover, the equation
[T*, T]=!�! reads on the above matrix components:

[T1*, T1]&XX*=!�! (6)

and

[T2*, T2]+X*X=0. (7)

Thus the operator X is Hilbert�Schmidt and consequently the operator
T2 is co-hyponormal with trace-class self-commutator. The principal func-
tion g2 of T2 satisfies g2�0, a.e.

Because Tr[X*, X]=0, relations (6) and (7) yield

Tr[T1*, T1]+Tr[T2*, T2]=Tr(!�!),

or equivalently, by the Helton�Howe formula,

|
_(T )

(g1+ g2) dA=|
_(T )

g dA.

On the other hand, we know that

g2�0� g& g1

almost everywhere on _(T ). Hence g2=0 a.e. and the operator T2 turns
out to be normal. Therefore X=0, and by the irreducibility of T we find
that T2=0.

This completes the proof of Theorem 3.1.

For sets K of finite perimeter, Theorem 3.1 was proved by methods of
rational approximation theory by K. Clancey; see [2, Theorem 5]. For K
equal to the closure of a domain bounded by finitely many smooth and
nonintersecting real analytic curves, J. Pincus, D. Xia, and J. Xia have
shown a stronger result, namely that the coresponding operator T is
similar to the multiplication by z on the Hardy space of the boundary of
K; see [14, Theorem 5].

Even in the case of an arbitrary compact set K, Theorem 3.1 has interesting
applications. We confine ourselves here to discussing only one of them, but
first we need some notation and terminology.
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Let EK be the exponential kernel corresponding to the set K and let H

denote the Hilbert space completion of the space of test functions D(C)
with respect to the seminorm:

&,&2=
&1
?2 |

C_C
EK (w, z� ) �z,(z) �w� ,(w) dA(z) dA(w).

Then we know from previous work that the Hilbert space H is isometri-
cally isomorphic to the weighted Sobolev type space H, that in this
isomorphism the operator T* corresponds to the multiplication by z� ,
and the vector ! corresponds to a smooth function / with compact
support in C which is equal to 1 in a neighbourhood of K; see [12,
Proposition XI.3.1]. Let us remark that

&/K= lim
w � �

(w� �z� EK (w� , z))=�z� (!, (T*&z� )&1 !) ,

where the derivatives are taken in the sense of distributions. Let r be a
rational function with poles outside _(T) and let , # D(C).

The scalar product of the space H does not distinguish functions which
vanish on a neighbourhood of K. Therefore we make an abuse of notation
and regard the elements of H as limits of germs of functions defined on
neighbourhoods of K.

Let us recall that

lim
w � �

(w� (EK (w� , z)&1))=(!, (T*&z� )&1 !)=
1
? |

K

dA(`)
`&z

,

see [2] or [12, Chapt. XI].
With these preparations, by an iterated integration and Stokes theorem

(for the integral in w) we obtain

(/, (r(T ))*,) H =
&1
?2 (�z �w� EK (w, z� ), /(w) r(z) ,(z))

=
1
?2 �|C

(T*&w� )&1 ! �w/(w) dA(w),

|
C

(T*&z� )&1 ! �z(,(z) r(z)) dA(z)� .

We can assume that the test function has support disjoint of the poles of
the rational function r. Let | be an open set with smooth boundary which
contains 0� and such that / | |=1. Then the first integral above becomes:
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|
C

(T*&w� )&1 ! �w/(w) dA(w)=
1
2i |C"|�

(T*&w� )&1 ! �w/(w) dw� 7 dw

=
&1
2i |

C"|�
�w[(T*&w� )&1 !/(w) dw� ]

=
1
2i |�|

(T*&w� )&1 ! dw� =?!.

Therefore

(/, r(T )*,) H =?&1 |
C

(!, (T*&z� )&1 !) �z� [,(z) r(z)] dA(z)

=?&1 |
K

,(z) r(z) dA(z).

In conclusion we can state the following result.

Proposition 3.2. Let, with the preceding notation, , # D(C) and r be a
rational function with poles outside the compact set K. Then the following
formula holds:

?(,, r(T ) /) H =|
K

,r� dA. (8)

This is a generalization of the basic quadrature formula which was
discussed in [16], namely:

?(!, r(T)!) H=?(/, r(T )/)H =|
K

r� dA.

Let P denote the orthogonal projection of L2(K ) onto the closure R2(K )
of rational functions with poles off K in L2(K ), all with respect to the area
measure. Since the vectors r(T )! form a dense subset of H (in virtue of
Theorem 3.1), formula (8) shows that the linear densely defined map

F : R2(K ) � H, F(r)=r(T )!,

has as its adjoint, up to the constant ?, also a densely defined map

P : H � R2(K ).

Note that these two maps are not likely to be bounded, and hence
extendable to the whole spaces, as for instance the case of the unilateral
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shift shows. However, a functional model up to a one-sided quasi-similarity
for these extremal operators can be obtained as follows.

Below we denote by H p(0), H p
0(0) the L2-Sobolev spaces of the domain

0 of order p. The multiplication operator with the variable z� is denoted
by Mz� .

Theorem 3.3. Let 0 be a bounded domain of the complex plane, with
piece-wise smooth boundary and let T0 # L(H) be the irreducible hyponormal
operator with rank-one self-commutator and principal function equal to the
characteristic function of 0� .

Then there exists a linear bounded operator X : H1(0)��H 2
0(0) � H with

null kernel and dense range, and which is such that XMz� =T*0 X.

Proof. The norm of a test function , # D(C) in the space H can be
given by the formula (see [12, Proposition XI.3.1]):

&,&2
H="|C

(T*&z� )&1 �,(z) dA(z)"
2

.

By using Stokes theorem and the fact that the boundary of 0 is
piecewise smooth we obtain:

|
C

(T*&z� )&1 �,(z) dA(z)

=|
0

(T*&z� )&1 �,(z) dA(z)+
1
2i |C"0�

�((T*&z� )&1 ,(z)) dz� 7 dz

=|
0

(T*&z� )&1 �,(z) dA(z)+
1
2i |

�0
(T*&z� )&1 ,(z) dz� .

Since &(T*&z� )&1 !&�1, ([T*0 , T0]=!�!), there exists a constant C
which depends only on the domain 0, such that:

&,&H �C &,&H1(0) (, # D(C)).

Therefore the map J : H1(0) � H induced by the identity is continuous
and has dense range by the very definition of the norm of the space H.

According to Theorem 3.1 and relation (8), the element J(,) is zero in
H if and only if

|
0

,r� dA=0
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for every rational function r with poles off 0� . But this is equivalent to the
fact that the Cauchy transform

�(z)=
&1

? |
0

,(`) dA(`)

�̀ &z�

is supported by the set 0� . Moreover, ��=, in the sense of distributions
and hence � # H 2

0(0).
Since the operator T*0 is similar to the multiplication Mz� by z� on H,

the map J induces the one-sided quasi-similarity X between the latter
operator and Mz� , regarded as an operator on the quotient Hilbert space
H1(0)��H 2

0(0).
This finishes the proof of Theorem 3.3.

Let us remark that the above proof shows that in the statement of
Theorem 3.3 we can replace the two classical Sobolev spaces with those
defined only by norms of �-derivatives. In either case, it seems that the
operator theory for the multiplier by z� on the respective quotient space was
not yet studied.

4. THE EXPONENTIAL KERNEL

Besides the associated hyponormal operator with rank-one self-com-
mutator, the exponential kernel E0 of a bounded planar domain 0 is the
only object which has proved to be useful in solving the L-problem of
moments. Two specific properties of this kernel are of interest from the very
beginning: the Taylor series at infinity (in both variables) of E0 determines
the class /0 # L1(C), and moreover, the Taylor polynomial at infinity of
degree N in both variables of E0 is in a simple (algebraic, nonlinear) bijec-
tion with the moments of degree less than or equal to N of the domain 0.

A detailed investigation of the analytic properties of the exponential kernel
is carried on in the paper [7]. We recall from there a single, central result.

Theorem 4.1. Let 0 be a bounded domain of the complex plane and let
E0(z, w� ), T be the associated exponential kernel and hyponormal operator
with rank-one self-commutator. Let a be a fixed point in the boundary
of 0 and let U be an open neighbourhood of a. The following assertions are
equivalent:

(a) The Cauchy transform �0 (dA(`)�(`&z)) extends analytically from
U"0� to U.

(b) The kernel E0(z, w� ) extends in both variables analytically�
anti-analytically from U"0� to U.
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(c) The localized resolvent (T*&z� )&1 !, extends anti-analytically (as
a vector valued function) from U"0� to U.

Moreover, in that case the boundary U & �0 is real analytic and
E0(z, z� )=0 for z # U & �0.

The last part of Theorem 4.1 gives an alternative proof of a recent
regularity result of Sakai [17] for boundaries admitting Schwarz functions.
As a byproduct of the proof of Theorem 4.1, it is shown in [7] that the
exponential kernel E0 extends analytically along paths, as long as the
Schwarz function of an analytic arc of the boundary �0 extends. See [18]
for terminology and the significance of such phenomena.

Simple arguments show that the exponential kernel does not extend
analytically across some singularities in the boundary of �0 such as normal
crossings or points of multiplicity higher than three.

Suppose now that 0 is an extremal domain for the L-problem, that is,
0=K & [P>0], where K is for instance a rectangle and P is a real poly-
nomial of degree N. In that case the Schwarz function S(z) of the boundary
�0 is an algebraic function in 0 which satisfies by definition the condition
S(z)=z� , z # �0; see for details [4] and [18]. By putting together the
above data we are faced with the following picture: the exponential kernel
E0 is determined by its Taylor polynomial at infinity of degree N, and it
is analytic�anti-analytic outside 0 and has the analytic extension behaviour
of an algebraic function inside 0 (more precisely, the analytic extension in
each variable has finitely many ramification points in 0). Moreover, the
analytic extension of E0 provides, when restricted on the diagonal, a
canonical defining function of �0. Thus, coming back to the question
raised in the introduction we ask: ``Knowing all these facts, is there a
simple structure of the extremal exponential kernels?''

So far, only the case of quadrature domains proved to be successful in
elucidating this question [15] or the image by an inversion of the exterior
of a quadrature domain [7].

Trying to understand the exponential kernel of a domain we were led to
an intrinsic characterization of it. The rest of this section is independent of
the-other parts and it contains this result. The principle of obtaining such
a characterization in terms of positive definite kernels is not new. It goes
back to the work of de Branges on Hilbert spaces of analytic functions [5];
the same technique was exploited later by Pincus and Rovnyak [13],
Carey and Pincus [1], and several other authors whose interests came in
contact with determining or characteristic functions of various classes of
operators. For another notable example see also Livs� ic [11]. In spite of
several close similarities with the mentioned works, we believe that the
details contained below are new.
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To simplify notation we put C� =C _ [�], D=[z # C ; |z|<1], and
C*=C"[0]. For a measurable function g : D � [0, 1] we denote:

Eg(z, w� )=exp \&1

? |
D

g(`)

(`&z)( �̀ &w� )
dA(`)+ ( |z|, |w|>1).

Let us also remark that the above function extends analytically to a
function

Eg : (C� "D� )2 � C*.

The question we address below is to find a set of minimal conditions
which characterizes analytic function E : (C� "D� )2 � C* to be of the form
E=Eg for a measurable function g as above.

One obvious condition is

E(�, w� )=E(z, �)=1 (z, w # C� "D� ). (9)

In order to state the next condition we define a new kernel F : (C� "D� )4 �
C by the formula:

F(z1 , z2 ; w1 , w2)=
E(z1 , w2) E(w1 , z2)&E(z1 , z2) E(w1 , w2)

(w1&z1)(w2&z2) E(z1 , w2)
. (10)

Whenever we encounter an analytic function h(z), the quotient

h(z)&h(w)
z&w

(z{w)

is extended analytically across the diagonal (z=w) by the value h$(z). As
a matter of terminology the inequality K(z1 , z2 ; w1 , w2)o0 means that the
kernel K is nonnegatively definite, that is,

:
N

k, l=1

K(sk , tk ; tl , sl ) *k *l�0,

for every finite set of points [(sk , tk), 1�k�N] in the domain of K and
every complex number *k , 1�k�N.

Theorem 4.2. Let E : (C� "D� )2 � C* be an analytic function with the nor-
malization property (9) and let F be the associated kernel (10).

There is a measurable function g : D � [0, 1] with the property that
E=Eg if and only if
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F(z1 , z2 ; w1 , w2)oz1w2F(z1 , z2 ; w1 , w2)

&(z1 w2 F(z1 , z2 ; w1 , w2))z1=�

&(z1 w2 F(z1 , z2 ; w1 , w2))w2=�

+(z1 w2 F(z1 , z2 ; w1 , w2))z1=w2=� o0. (11)

Note that the second term in the above positivity condition is a second
order difference at infinity of the function F.

Proof (Necessity). For this part of the proof we use the known
factorization of the positive definite kernel 1&Eg in terms of the associated
hyponormal operator with rank-one self-commutator; see [12, 1].

Let g be a measurable function as in the statement and let T denote the
irreducible hyponormal operator with rank-one self-commutator which has
the principal function equal to g, almost everywhere. Let us denote (as
before) [T*, T]=!�! and let us recall the basic formula:

Eg(z, w� )=1&( (T*&w� )&1 !, (T*&z� )&1 !) . (12)

Note that we have tacitly made the normalization supp(g)/D� , hence
_(T )/D� and &T&�1 (because T is a hyponormal operator; see [12,
Corollary 3.1.4]).

Next we need a few elementary identities with resolvents, all stated for
the current variables u, v, z1 , ... outside the closed unit disk:

(T&u)&1 (T&v)&1=
(T&u)&1&(T&v)&1

u&v
(13)

and

(T*&u� )&1 (T&v)&1=(T&v)&1 (T*&u� )&1

+(T*&u� )&1 (T&v)&1 (!�!)

_(T&v)&1 (T*&u� )&1. (14)

In particular, from formula (14) we obtain:

( (T*&u� )&1 (T&v)&1 !, !)=( (T&v)&1 (T*&u� )&1 !, !)

+( (T*&u� )&1 (T&v)&1 !, !)

_( (T&v)&1 (T*&u� )&1 !, !) ,
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or equivalently,

(1&( (T&v)&1 (T*&u� )&1 !, !) )(1+( (T*&u� )&1 (T&v)&1 !, !) )=1,

that is,

1+( (T*&u� )&1 (T&v)&1 !, !)=
1

Eg(v, u� )
. (15)

We claim that

F(z1 , z2 ; w1 , w2)=( (T&z1)&1 (T*&z2)&1 !,

(T&w2)&1 (T*&w1)&1 !) . (16)

Indeed, according to these identities we obtain (denoting E=Eg):

( (T&z1)&1 (T*&z2)&1 !, (T&w2)&1 (T*&w1)&1 !)

=( (T&w1)&1 (T*&w2)&1 (T&z1)&1 (T*&z2)&1 !, !)

=( (T&w1)&1 (T&z1)&1 (T*&w2)&1 (T*&z2)&1 !, !)

+( (T&w1)&1 (T*&w2)&1 (T&z1)&1 !, !)

_( (T&z1)&1 (T*&w2)&1 (T*&z2)&1 !, !)

=
_( (T&w1)&1 (T*&w2)&1 (T*&z2)&1 !, !)

&( (T&z1)&1 (T*&z2)&1 !, !) &
w2&z2

=
( (T&w1)&1 (T*&w2)&1 !, !) &( (T&w1)&1 (T*&z2)&1 !, !)

(w1&z1)(w2&z2)

+
( (T&z1)&1 (T*&z2)&1 !, !) &( (T&z1)&1 (T*&w2)&1 !, !)

(w1&z1)(w2&z2)

+(( (T&w1)&1 (T&z1)&1 (T*&w2)&1 !, !)

+( (T&w1)&1 (T*&w2)&1 (T&z1)&1 !, !)

( (T&z1)&1 (T*&w2)&1 !, !) )

_
( (T&z1)&1 (T*&w2)&1 !, !) &( (T&z1)&1 (T*&z2)&1 !, !)

w2&z2
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=
E(w1 , z2)+E(z1 , w2)&E(z1 , z2)&E(w1 , w2)

(w1&z1)(w2&z2)

+
( (T&w1)&1 (T&z1)&1 (T*&w2)&1 !, !)(E(z1 , z2)&E(z1 , w2))

E(z1 , w2)(w2&z2)

=
E(w1 , z2)+E(z1 , w2)&E(z1 , z2)&E(w1 , w2)

(w1&z1)(w2&z2)

+
(E(z1 , w2)&E(w1 , w2))(E(z1 , z2)&E(z1 , w2))

E(z1 , w2)(w1&z1)(w2&z2)

=
E(z1 , w2) E(w1 , z2)&E(w1 , w2) E(z1 , z2)

E(z1 , w2)(w1&z1)(w2&z2)
.

Thus relation (16) is verified. It remains to remark that:

T(T&z1)&1 (T*&z2)&1 !

=(T*&z2)&1 !+z1(T&z1)&1 (T*&z2)&1 !

=z1(T&z1)&1 (T*&z2)&1 !&(z1(T&z1)&1 (T*&z2)&1 !)z1=� .

In conclusion, the positivity conditions (11) in the statement become:

0O(T(T&z1)&1 (T*&z2)&1 !, T(T&w2)&1 (T*&w1)&1 !)

O( (T&z1)&1 (T*&z2)&1 !, T(T&w2)&1 (T*&w1)&1 !) .

Since T is a contraction these two positivity conditions are evidently
true.

(Sufficiency) Let E be an analytic function which satisfies the normaliza-
tion and positivity conditions in the statement. We want to prove that
E=Eg , where g : D � [0, 1] is a measurable function. This in turn is equiv-
alent to finding a hyponormal operator T with rank-one self-commutator
[T*, T]=!�! which has g as its principal function and hence E as an
associated determinantal function.

Since the kernel F was supposed to be nonnegatively definite, there exists
a separable, complex Hilbert space H and an H-valued analytic function

\ : (C� "D� )2 � H

such that

F (z1 , z2 ; w1 , w2)=(\(z1 , z2), \(w2 , w1)) (zj , wj # C� "D� ; j=1, 2). (17)

In addition, we can assume without loss of generality that the image of the
function \ spans the whole Hilbert space H.
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By assumption, F (�, z2 ; w1 , w2)=F (z1 , � ; w1 , w2)=0, therefore

\(�, z� )=\(z, �)=0 (z # C� "D� ).

In particular, both limits limz1 � � z1 \(z1 , z2) and limz2 � � z2\(z1 , z2) exist.
We define a linear transformation on the range of \ by the formula:

T\(z1 , z2)=z1\(z1 , z2)&(z1 \(z1 , z2))z1=� . (18)

Let n be a positive integer and let us choose arbitrary elements
z1(k), z2(k) # C� "D� , *k # C, 1�k�n. In view of condition (11) in the state-
ment of Theorem 4.2 we have:

"T :
n

k=1

*k \(z1(k), z2(k))"�" :
n

k=1

*k\(z1(k), z2(k))" .

Therefore, the map T extends linearly to a contraction defined on the
whole space H. We denote its extension by the same symbol T.

Our next aim is to prove the formula

T*\(z1 , z2)=z2\(z1 , z2)&(E(z1 , z2)(z2\(z1 , z2)))z2=� . (19)

To this end we choose arbitrary points z1 , z2 , w1 , w2 # C� "D� and
compute

(T*\(z1 , z2), \(w2 , w1)) &(\(z1 , z2), T\(w2 , w1))

=(z2\(z1 , z2), \(w2 , w1))&E(z1 , z2)((z2\(z1 , z2), \(w1 , w1)) )z2=�

&w2(\(z1 , z2), \(w2 , w1))+((\(z1 , z2), w2\(w2 , w1)) )w2=�

=(z2&w2) F(z1 , z2 ; w1 , w2)&E(z1 , z2)(z2F(z1 , z2 ; w1 , w2))z2=�

+(w2F (z1 , z2 ; w1 , w2))w2=�

=
_&E(z1 , w2) E(w1 , z2)+E(z1 , z2) E(w1 , w2)

+E(z1 , z2)(E(z1 , w2)&E(w1 , w2)) &
(w1&z1) E(z1 , w2)

+
E(w1 , z2)&E(z1 , z2)

w1&z1

=0.

Thus formula (19) is verified.
Let us remark that, denoting

!=(z1 z2 \(z1 , z2))z1=z2=� ,
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we have

(T*&z2)(T&z1) \(z1 , z2)=(T*&z2)(&z1\(z1 , z2))z1=�

=(E(z1 , z2)(z1 z2 \(z1 , z2))z2=�)z1=�=!

(because E(�, z2)=1). Whence we find the formula:

\(z1 , z2)=(T&z1)&1 (T*&z2)&1 ! (z1 , z2 # C� "D� ). (20)

Consequently, we obtain

[T*, T] \(z1 , z2)=[T*&z2, T&z1](T&z1)&1 (T*&z2)&1 !

=!&E(z1 , z2)!

=(1&E(z1 , z2))!.

Therefore the operator T has rank-one self-commutator, and the vector !
spans the range of [T*, T].

Finally, we return to formula (10) and remark that

1&E(z1 , z2)=(w1w2 F (z1 , z2 ; w1 , w2))w1=w2=�=(\(z1 , z2), !) ,

so that

[T*, T] \(z1 , z2)=(\(z1 , z2)!, !)!.

This proves that [T*, T]=!�!.
In conclusion, E=Eg , where g is the principal function of the operator T.
This finishes the proof of Theorem 4.2.

Remark 4.3. By changing the variables uj=(1�zj), vj=(1�wj ), j=1, 2,
we can define the function

G(u1 , u2 ; v1 , v2 )=
F (z1 , z2 ; w1 , w2)

z1w2

so that G is analytic in the polydisk D4.
For an analytic function h(z), z # D, we define the difference of h at zero

by

2zh(z)=
h(z)&h(0)

z
.

Then condition (11) becomes:

0O2u1
2v2

G(u1 , u2 ; v1 , v2 )OG(u1 , u2 ; v1 , v2 ). (21)
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Let G denote the class of all analytic functions G : D4 � C which satisfy
the positivity conditions (27) and have the structure derived from fomula
(10), where E is subject to the normalization (9).

Then the truncated, or full, L-problem of moments treated in the pre-
vious sections (and in the papers [15, 16]) is equivalent to the following
interpolation problem for the class G:

G # G

and

((���u1)m (���u2 )n G)(0, 0 ; 0, 0)=bmn (0�m�m+n�N).

This is a two-dimensional variant of the classical Carathe� odory�Feje� r
problem (see for instance [6]). On the basis of our previous results
obtained for the L-problem of moments, we know for the above interpola-
tion problem how to describe its solvability in positivity terms (in the case
N=�), while for the corresponding truncated interpolation problem we
know a description of all its extremal solutions (for N finite). In view of the
bijection between the class of functions G and the measurable functions
g : D � [0, 1], the class G has a natural convex structure given by the free
parameter g.
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